『圧縮側合力の2%』

大梁 H-488x300x11x18 σy:H型鋼の降伏応力度(SS400なら235N/mm2)

A= 15920 mm² A:H型鋼断面積(全断面積)

 $C = \sigma_v A/2 = 1871 \text{ kN}$ $C = (\sigma_y A)/2 \cdots (5.28 \text{ t})$

F=0.02C= 41.2 kN F=0.02C $\cdots (5.26 \pm 1)$

『補剛材の強度』

補剛材 H-150x75x5x7 σy:補剛材の降伏応力度(SS400なら235N/mm2)

 A_b = $1785~\mathrm{mm}^2$ Ab:補剛材の断面積

 F/A_b = 23.1 N/mm^2 $F/Ab \le \sigma_y$ を確認する

 $F/A_b \leq \sigma_v$ ok

『補剛材の軸方向剛性』

 $k=(2\cdot Ab\cdot E)/L$ 146.4 kN/mm $k=(2\cdot Ab\cdot E)/L$

 ${f E}:$ 補剛材の弾性係数 $205000.0~{
m N/mm}^2$ ${f E}:$ 補剛材の弾性係数

L: 補剛材の長さ 5000.0 mm L: 補剛材の長さ

『補剛材の必要剛性』

 $5.0 \times (C/Lb) = 5.50 \text{ kN/mm}$ ko $\geq 5.0 \times (C/Lb)$ ······(5.27式)

 $C=\sigma \text{ yA}/2=$ 1871 kN $C=(\sigma \text{y-A})/2$ ······(5.28 st)

Lb:補剛材間隔 1700 mm

 σ y:補剛材の降伏応力度 235 $\mathrm{N/mm}^2$

 $k \circ \geq 5.0 \times (C/Lb)$ ok

『横補剛材の剛性』 K=F/δ(横補剛材の剛性)

e= 395 mm

I= 6660000 mm⁴

 $\mathsf{K} = \mathsf{F} / \delta$ (横補剛材の剛性) $\delta = \theta \cdot \mathsf{e}$ $\theta = \mathsf{M} \cdot \mathsf{L} / 3 \mathsf{E} \mathsf{I} = \mathsf{F} \cdot \mathsf{e} \cdot \mathsf{L} / 3 \mathsf{E} \mathsf{I}$

 $\theta = M \cdot L/_{3FI} = F \cdot e \cdot L/_{3FI} = 0.01984$

 $\delta = \theta \cdot e = 7.84 \text{ mm}$

 $K=F/\delta = 5.25 \text{ kN/mm}$